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Preface

This thesis was under the sponsorship of the Air Force Weapons

Laboratory at Kirtland Air Force Base. It is a continuation of previous

efforts by Captain David Meer in his Doctoral Dissertation and

Lieutenants William Zicker and Bill Moose in their Master's theses.

Specifically, the study involves a parameter sensitivity and robustness

analysis for the corrected PI controller originally conceived by Moose

in addition to a robustness study which incorporates a first order

Gauss-Markov acceleration target model.

I would like to thank my thesis advisor, Dr. Peter S. Maybeck, who

provided guidance and technical support so that this thesis effort

would be complete.

Lawrence C. Jamerson
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Abstract;.

The purpose is to use a PI controller to point the centroid of a

particle beam at an intended target. Multiple Model Adaptive Estimator

is used to estimate the centroid of a one-dimensional Gaussian shaped

source of photo-electron events. "Merge Method" of filter pruning is

used to limit the size of this filter. A standard Kalman filter is

used to estimate the position of the target where the target is

initially modelled as a first-order Gauss-Markov position process and

later as a first-order Gauss-Markov acceleration process. A PI controller

is designed using LQG methods, and true states are replaced by their

best estimates by invoking the principle of assumed certainty equiva-

lence. With a target position model within the software, a parameter

sensitivity analysis is performed as well as a robustness study where

unmodelled constant and sinusoidal disturbances are added to the system.

With a target acceleration model within the software, a robustness study

is carried out where target parameters are varied within the truth model
C

without telling the filter. In an attempt to recover full state feedback

robustness qualities, Loop Transmission Recovery tuning is attempted.

viii
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PARTICLE BEAM TRACKER FOR AN ACCELERATING TARGET ..-.

I. INTRODUCTION..-t3

* .. _ o -"

- ..

classes of these weapons involves particle beams. In addition to the

problems of generating and propagating the beams, there is also the pro-

issue of beam control (Ref. 1). Not only must the beam be regulated to

reject undesired inputs such as wind gusts and other physical distur-

bances, it must also be able to track an intended target. In order to . -

* achieve regulation and tracking characteristics, the controller must

contain some type of feedback to enhance system performance and to pro-

mote stability robustness--maintaining stability in the face of real-

C world changes to the basic system. However, before control can be

attempted, some method of measuring beam location must be achieved.

One proposal for measuring the particle beam's location is to illu-

minate it using an incident laser. The transfer of energy from the

laser to individual particles within the particle beam results in a

spontaneous emission of photons as electrons decay from their excited

state to a ground state. These photons appear as individual

,1--1
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7 "rd

photo-electron events on a detector array, whereby some knowledge of

* the beam's location can be inferred.

These photo-electron events can be well modelled as Poisson space-

time point processes. Snyder and Fishman (Ref. 15) developed an esti-

* mator which specifically handled the case of measurements that appear as

Poisson point processes. However, their filter assumed that all measure-

ments were signal-induced, thereby eliminating the practicality of a

* single such filter being used in an environment where there might be

noise-induced events such as "dark current"--detecting a signal when

there is no signal present (Ref. 9). In 1982, Captain David Meer, in

his doctoral dissertation (Ref. 9), accomplished the design of an esti-

mator which could be specifically applied to the particle beam problem.

His final result was a multiple model adaptive estimator (MMAE) which

contained a bank of Snyder-Fishman filters. Each filter contained a

different assumption as to the sequence of signal and noise events, i.e.,

whether each event in the sequence was signal-induced or noise-induced.

* Meer also developed a method of calculating the weighting factors neces-

sary to create the overall adaptive estimate as the weighted sum of the

outputs of each filter. In this manner he was able to avoid the inade-

C quacy of a single Snyder-Fishman filter based on a noise-free model,

plus account for variations of certain parameters within the models.

1.2 PROBLEM STATEMENT

With this capability of particle beam detection and position esti-

mation in hand, the problem of beam control can now be addressed. In

1983, ILt William Zicker, in his master's thesis (Ref. 18), approached

this problem with a proportional gain controller. A deterministic

1-2
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optimal LQ controller (based on a linear system model and using a

* quadratic performance index for optimization) was designed assuming full

state feedback, and then these states were replaced with their best esti-

mates as the principle of assumed certainty equivalence (Ref. 4: Vol. 3)

* was applied to synthesize a stochastic controller. These state estimates

were provided by the Meer filter which modelled the beam centroid loca-

tion as the output of a linear system model driven by white Gaussian

noise with a one dimensional state vector--position along one axis. The

Kalman filter which provided estimates of the target's state, incorpo-

rated a similar simplified model. Simplification was reasonable because

Zicker's work was a feasibility study to see if Meer's filter could be

used in a beam controller.

Another problem studied by Zicker was how to limit the size of the

* Meer filter, which grows with each new realization on the photodetector

array. Meer suggested a method of "pruning" the MMAE while Zicker

showed the superiority of "merging", a technique originally conceived by

* Weiss at MIT (Ref. 17). Both these techniques will be discussed more

fully within the next chapter.

In 1984, Captain William Moose (Ref. 10) conducted a similar study

using a proportional plus integral (PI) controller and compared it to

Zicker's work. The PI controller possesses several characteristics which

make it ideal for the tracking problem. First, control is based on

tracking errors which have occurred in the past as well as those which

are occurring at the present time. Second, type-1 systems are capable

of tracking a constant input with zero steady state error even in the -..-

C face of unmodelled constant disturbances. The design was achieved by

1-3
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again employing the principle of assumed certainty equivalence in con-

junction with the simplified design models noted previously. The final

result was a tracking system which displayed superior performance (rela-

tive to Zicker's proportional gain controller) yet exhibited sluggish-

ness due to the additional integration term in the loop transmission.

Although Moose's results exhibited enhanced performance, there was a :-.

significant flaw in his software for minimizing the quadratic cost func-

tion. When the goal of an optimal controller is to minimize the error

between a controlled state and a desired target state, off-diagonal

terms appear in the weighting matrix. Unfortunately, Moose neglected

to include these terms, thereby computing controller gains which were

not optimal for this problem.

The work of Meer, Zicker, and Moose showed that effective estimation

of particle beam states is possible and that control of the beam can be

synthesized using the principle of assumed certainty equivalence. How-

ever, the feasibility was demonstrated at the cost of simplified models;

therefore, the next logical question to ask is whether practical designs

can be achieved. By increasing the descriptive adequacy and size of the

filter models and including such effects as actuator dynamics, the

C problem characteristics become closer to what might actually be expected

in the real world. Another practical consideration is whether the con- ,

troller can maintain stability robustness in the face of real world

plant variations. When the controller is designed, certain models and

conditions are assumed. However, when this system is implemented on an

actual plant, the model parameters might vary substantially (as well as

C in a small perturbation sense) from the assumed design conditions. When

1-4
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these perturbations occur, it is essential to maintain stability, and it *"

* is desirable to maintain good performance in the closed loop system.

These attributes must be verified.

1.3 SCOPE

This project begins by embedding a new target model into the Kalman

filter used to estimate the position of a target. The new Kalman filter

contains a three-state acceleration model for the single axis case,

letting target acceleration be modelled as a first order Gauss-Markov

process. Note that the Meer filter remains unchanged. With the esti-

mators equipped for more practical applications, controller design is

begun. Two areas which receive a great deal of attention during this

thesis are the robustness of the controller and the proper selection of

cost function weighting matrices used in evaluating controller gains.

To examine robustness, certain important parameters are varied in the

truth model, and the resulting controller response is examined. If the

response is not suitable, Loop Transmission Recovery (LTR) techniques

(Refs. 6 and 16) are employed in order to retune the Meer Filter. If

these techniques are not successful, adaptive estimation of the uncer-

tain parameters will be considered. As far as selection of the cost
4-

function weighting matrices is concerned, Moose's software is amended to

include off diagonal terms as discussed previously. Through the use of

the revised software, alternate weighting matrices are examined in order

to yield the desired responses. Since weighting matrix choice is also

tied to the robustness issue, the desire to maintain stability and per-

formance despite changes in the real-world system from assumed design

conditions will influence our choices.

1-5
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1.4 APPROACH

* The approach to designing a controller of this type is a three-step

process. First, the PI controller is designed using optimal control

techniques. The models for the beam and target systems are assumed to

* be linear and a quadratic cost function (performance index) is the

optimizing criterion. This is the standard LQ technique where the con-

troller gains can be calculated using a backward running Riccati dif-

* ference equation (the system is discretized). The controller is designed I

assuming complete access to all the states of the beam and target. The

second step in the process is to form state estimators for both the beam

and the intended target. The Meer filter provides position state esti-

mates for the beam while a standard Kalman filter is used to estimate

the target's states. The third and final step is to replace the full

* state feedback assumption with the best estimates of these states as L
supplied by our filters. Because this is not an LQG problem (due to the

Meer filter), we invoke the principle of assumed certainty equivalence

to allow this final step.

As was done in previous theses, system performance is studied using

computer simulation. Because the particle beam problem does not involve

C a purely linear system and linear filter/controller, a standard covari- L

ance analysis cannot be used for data analysis. Therefore, system per-

formance is evaluated using Monte Carlo simulations in order to yield

the necessary statistical data. Because we are dealing with a Poisson

point process, each simulation entails approximately 200 runs each

instead of the usual 15 or so typical of many aerospace applications.

C

1-6



The adequacy of this number of runs was shown in Zicker's thesis (Ref.

18) and need not be repeated here.

A Monte Carlo simulation can be divided into two separate parts.

First, there is the "truth model", which is a highly detailed represen-

tation of real world dynamics. This model is the result of careful
.-. J

testing of the real world system. Second, there is the filter/controller

combination which is designed using a reduced order model and the se-

lected weighting matrices noted earlier. The "truth model" is used to

drive the filter/controller configuration in order to provide realistic

inputs so that system performance can be evaluated. This structure is

displayed in Figure 1-1. In the figure, the "truth model" uses the true

measurement noise V t, true process noise wt(t), and feedback controls

u(t) to form the true states xt(t). These true states indicate where

* the beam and target are actually located. The truth model provides

noise corrupted measurements to the Meer and Kalman filters which in

turn attempt to estimate these states ((t)). By invoking the principle

of assumed certainty equivalence, the state estimates can be used with

the PI controller to provide the control inputs to the truth model. The -

error term e(t) provides a method for analyzing state estimation accuracy.

C However, x.t(t) and u(t) are the important quantities to observe when the

performance analysis of a proposed controller is desired.

1.5 SUMMARY OF REMAINING CHAPTERS

The remaining chapters begin with a discussion of the Meer filter

in Chapter II. A complete derivation is provided, including the

Snyder-Fishman filter equations, the MMAE configuration, weighting fac-

tor calculations, and filter "pruning" techniques. Chapter III develops

1-7
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the PI controller to be used in this thesis. This controller incorpo-

*rates a first order Gauss-Markov acceleration model for the target. 1.7

Chapter IV describes the analysis techniques used, while Chapter V is

a presentation of results. Chapter VI provides conclusions and recomn-

* mendations for further study.

1-9



II. MEER FILTER

The purpose of this chapter is to present a detailed description of

the Meer filter (Refs. 5 and 9). Recall that this is the estimator

which was specifically created for the particle beam pointing and track-

ing problem. As with all filters, there must first be a design model

upon which the algorithms are based. Once the model is chosen, the

filter structure can be developed. This development includes justifica-

tion for the MMAE configuration as well as a discussion of the component

Snyder-Fishman filters and weighting matrix equations. The chapter con-

cludes with a presentation of the two methods for limiting the size of

the Meer filter, which is imperative if computational loading is to be

considered. Throughout the chapter, mathematical rigor is employed so

that this section might be understood without the use of reference aids.

However, these references will be provided for the reader who desires

additional background.

II. 1 PARTICLE BEAM MODEL

Estimation of the particle beam's location begins by shining a laser

at the beam and observing the individual photo-electron events as the

particles transition from an excited energy state to their ground state.

These events can be recorded on a photo-detector array; however, the

regularity of measurements is neither continuous nor at predetermined

discrete time intervals. Rather, Snyder and Fishman noted that the

recorded measurements appear as Poisson space-time point processes "

C (Ref. 15:692). That is to say, each measurement has associated with it

2.-..
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a particular time of occurrence t and spatial location r in the

* m-dimensional vector space (i.e., riRm); for a two-dimensional detector

array, m=2. A history of observations might therefore appear as "

[(tl,r) ,(t 2 ,r 2 ) ........ (tN(t),rN(t))]

where N(t) is the total number of events observed.

In order to progress into the work of Snyder and Fishman (Ref. 15),

* each of these observations is assumed to be purely signal-induced.

With the nature of the observations firmly in hand, the next step is to

examine signal rates. For this problem, the signal rate parameter which

describes rates of occurrence can be assumed to be spatially distributed

in a Gaussian manner, with the equation as a function of spatial vari-

able r given as (Ref. 9:18):

X,(t,r,g(t)) : A(t)exp{-[7-HTR_1(t)[-_(t)-t)]/21 (2-1)

where

* A is the maximum value of the gaussian curve.

R(t) is symmetric positive definite matrix which depicts the
spread of the curve.

H(t)X(t) represents the assumed location of the beam centroid in
C the m-dimensional detector space.

H(t) is an m x n projection matrix which relates X(t) to the
beam centroid.

X(t) is a stochastic process (as noted by the under tilde) which
represents the state dynamics of the beam centroid.

The state process can be modelled as the Gaussian output of the linear

stochastic differential equation:

2-2
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dA(t) F(t)X(t)dt + G(t)dJ(t) (2-2)

A (to

where 1(t) is a Wiener process (Brownian motion) with a diffusion

_Q(t)=I, and io is a Gaussian random vector with mean xo and covariance

P~ There is no loss of generality in letting this be a unit-diffusion

process, since, if we let G=G'Q so that GGT=G GT, non-unit diffusions

can be readily addressed.

Note that the equations for the signal rate parameter and the state

variable 4(t) are specific to the particle beam problem. Xs(tII,(t))

need not be Gaussian, nor the shaping filter linear, in order to develop

the MMAE for the general estimator. However, these particular choices do

lend themselves well to estimators which have forms similar to those of

Kalman filters. These filters were developed by Snyder and Fishman

(Ref. 15)and will be discussed in the next section.

Similar to signal-induced events, noise-induced events appear as

Poisson space-time point processes, but this time with rate parameter

Xn(t,r). Generally, this parameter is assumed to depend on the randomn
process 0 that can depict characteristics of the noise. Therefore,

Xn (t,-r) itself can be taken as a random process dependent on jQ. However,

in this work X (tr) is deterministic, time invariant and constant-
n

valued across the entire detector array (Ref. 9:21-22).

The signal and noise events are independent and additive. There-

fore, the probability density function of the sum is equal to the con-

volution of the individual densities, or the characteristic function of

the sum equals the product of the individual characteristic functions

2-3
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(Ref. 18:12-13). As shown in Papoulis (Ref.13:155), a characteristic

function is simply the Fourier transform of a particular probability

density function. Therefore, for the signal process, the equation for

the conditional characteristic function for the signal process, condi-

tioned on a given value of 7(t), is

s(,r,7(t)) = exp{Xs(t,-r,(t))(eJ ) (2-3)

and for the noise

4n(w F) : exp{Xn (t ,%)(eJ 1)} (2-4)

where j=/T and w represents frequency in radians/sec. Multiplying these

together yields a total rate parameter which looks like the sum of the

signal and noise rate parameters.

X(t,-rIx(t)) X x,(tF,i(t)) + Xn (tr) (2-5)

11.2 SNYDER-FISHMAN FILTER

Snyder and Fishman (Ref.15) proposed an estimate of the beam's

centroid position (assuming the absence of noise sources) as H(t)x(t),

where x(t) is the Bayesian estimate:

i(t) = E{x(t)IZN(t)} = !(t)f( (t)IzN(t))d (2-6)
Rm

This equation is interpreted as the expected value of the beam state

x(t), conditioned upon all measurements made through time t. The func-

tion f( IZN(t)) is the conditional probability density function of the

state x(t) (letting (t) be the dummy variable of integration associated

with (t)), conditioned on ZN(t) zN(t) represents the measurement

2-4
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history shown on page 2-2. Rm indicates that the integration is being

performed across the entire detector array. In the absence of noise

events, the estimator can be described by the following differential

equations:::: :

dx(t) F(t)x(t)dt +f K(t)[r-H(t)x(t)]N(dt x dF) (2-7)
Rm

*dP(t) =F(t)P(t)dt + P(t)F T(t)dt + G(t)G T(t)dt

-f K(t)H(t)P(t)N(dt x dr) (2-8)
Rm

'I T T

K(t) =P(t)H T(t)[H(t)P(t)H T) + R(t)]f1  (2-9)

starting from the initial conditions:

0 0 ..

Pt) p (2-10)-_o

In these equations, x(t) is the estimate of beam state, H(t)x(t) is the

estimate of the beam centroid location, 2(t) is the filter-computed

estimate error covariance (i.e., an indication of error), and K(t) is

the filter gain as computed in Equation (2-9). f f(t,Fr)N(dt x dr) is

known as a counting integral and is defined below.

(0 N t=0

f f(t,Fr)N(dt x d-F) =(2-11)

Rm

C N~t)
i= fi~'7

2-5
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where 6 is the Kronecker delta. Stated simply, if no signal is

detected by the array, the integral assumes a value of 0. If an event

is detected during the time interval between t and t + dt, the integral ;

equals f(ti, r) for that time ti.

* The estimator equations are still not in readily implementable form;

however, Santiago and Maybeck (Refs. 7 and 14) showed that Equations (2-8)

through (2-10) could be separated into propagation and update equations.

*O The propagation equations have the form:

dx(t) = F(t)x(t)dt (2-12)

T dP(t) = F(t)P(t)dt + P(t)FT(t)dt + G(t)GT(t)dt (2-13)

while the update equations are written as

x(ti ) : x(ti-) + K(ti)[F - H(ti)-i(ti-)] (2-14)

P(ti+) = P(ti-) K(ti)H(ti)P(t i.) (2-15)

ti represents time immediately prior to the observed event, and

ti  is the time immediately following the event. Note that these equa-

tions are very similar to standard Kalman filter equations except for one

C major difference. With the Snyder-Fishman filter, updates are performed

whenever a photo-electron event happens to be detected, whereas Kalman

filter updates are performed at predetermined intervals.

This section has completely described the estimation of 7(t) using

a Snyder-Fishman filter. In the absence of noise events, or with a

complete knowledge of which events are noise and which are signal, these

equations could be implemented with a great degree of confidence in the

2-6
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output estimates. However, in actual practice, the detector cannot dif-

* ferentiate between the two sources, and, as Santiago points out (Ref. 14),

accuracy is severely degraded. Therefore, some type of configuration

is needed in order to "filter out" the noise in hope of properly esti-

4* mating the beam's location. To accomplish this task, Captain Meer

designed the MMAE configuration (Refs. 5 and 9) which is discussed in

the next section.

11.3 MULTIPLE MODEL ADAPTIVE ESTIMATOR

This section gives an overall picture of the Meer filter. First, the

general MMAE scheme is discussed in order to generate an understanding of

its uses and the equations involved. Second, the specific application to

the Meer filter is presented. This latter section includes such topics

as the hypothesis sequence and its relation to the MMAE as well as the

need to limit the size of the resulting hypothesis tree. References are

cited in case a more thorough derivation is desired.

11.3.1 GENERAL MMAE. In order to develop the basic equations for

an MMAE, we assume that minimal mean squared error is the optimality

criterion to be used for the estimate of beam location (Ref. 4:232,

Vol. I). This being the case, we have the same equation for an optimal

x(t) as in the previous section:

A(t) : E{x(t)IZN(t)} = f (t)f((t)IZN(t))d (2-16)"

N( t)Z is again the history of measurements through time t (i.e.,
ZN (t) t _t )  Nt ".

zt) [ ), z(t (t )]) and is the dummy variable to

represent the beam state within the Riemann integral. f(IZN( t)is the

2-7
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conditional probability density function of the state F based upon the

history of measurements ZN(t). Remember that the ZNt) represents

Poisson space-time point process observations; however, this has no bear-

ing on the general development. Also, f( Iz N(t )) within the integral

must exist in order for the estimate to be evaluated..

The next step is to assume that either the state process 7(t) or 1.', -

the measurement process z(t) is not adequately described by a single model,

making f( Iz N(t)) difficult to evaluate. However, X(t) or -z(t) can be

described by a finite number of models chosen from an appropriately

defined set. Assume that there are J+1 models which can be used to

describe x(t) or i(t). Each model is represented by hi where

i=0,1,2,...,J. We can depict hi as
i

hi c H (2-17)

where H is the set of possible models. Note that the collection of

models need not be finite for the general MMAE development, yet we will

continue this assumption due to the nature of the particle beam esti-

mator.

Turning back to the equation for the optimal estimate, we find that

Cthe Riemann integral can be evaluated as:

7(t) f 6t) f f ((t),h ZN(t))dhd (2-18)

R m H

The joint density function is needed because the marginal function is

not adequately modelled by one h. By using Bayes' rule (Ref. 13:161),

Equation (2-18) can be expressed as "K

C



X(t) =f - (t) f f( Jh,Z N(t))f(hIZN(t))h (-9

R m H

The number of models has been limited so that

f(hIZN~) Pr(h. correctlZN t)6(h-h. (2-20)
j=0 '

where Pr(-) is probability and 6(-) is the Dirac Delta function. Sub-

stituting Equation (2-20) into (2-19) and applying the sifting property V

(Ref. 1:185, Vol. II) of S(-), we find: ---

x(t) f f (t) I f( (t)jh 'z N(t) )Pr(h Iz N(t))dtW (2-21)
R m j=0

By shifting the order of the summation and integral signs we see:

*X(t) = Pr(h.IZN~) f m (t)f( i(t)jhj3'zN~) (2-22)
0 Rm

= Pr(h.IZN t)E{-x(t)Ih.,ZN t1 (2-23)
j=0

= Pr(h.IZN )x.(t) (2-24)

IC j=0

In Equation (2-24), x.(t) represents the estimate of x(t) assuming
N-3

model h. is correct, and Prl(h.IZN~) is the probability of model h.

being correct given that the measurement sequence Z N( t) was observed.

Equation (2-24) can be represented by the block diagram in Figure 2-1

and is the general equation for an MMAE state estimate.
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Another variable in which we might be interested is the state error

covariance of the estimator. This quantity is not essential for obtain-

ing the estimate x(t); however, it is useful for performance analysis.

The covariance of the full scale estimator can be written as

^ ^ ]T zN(t)
P(t) = E{[x(t) - 7(t)][7(t) - X(t)] 1 ] (2-25)

while that of a particular estimator appears as

P.(t) E{[x - j(t)][(t) - j hjZ N  (2-26)

From these, the overall covariance can be written as (Ref. 9):

(t = hj ) Pj(ti + ) .

+ [V.t.i - (t.~i (t.+) - +x(
+ 31 -1 --"-3...

0 (2-27)

using the model-specific estimates Xj(t), covariances P(t , and the

overall estimate x(t) from Equation (2-24). Note that since this equa-

* tion depends on Pr(hjIZN(t)), j(ti+), and 7(t +) it is not precom-

putable (Ref. 4:131, Vol. II).

11.3.2 PARTICLE BEAM MMAE. If we are to estimate the particle beam

C state 7(t) effectively, we need two basic equations for our filter model.

These are the system dynamics and measurement model equations. As shown

in Equation (2-2) earlier in this chapter, the state process x(t) can be

modelled as the Gaussian output of a linear stochastic differential I

equation. This dynamics model led to the Snyder-Fishman filter equations

shown in (2-12) through (2-15). Note that these equations assumed that

C any measurements were purely signal-induced. However, as noted

2-11 -"
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previously, a photo-electron event can be either signal- or noise-

induced. Therefore, we do not yet have an adequate measurement model

for the particle beam estimator.

It is known that any observed event on the detector array must be

either signal- or noise-induced. Knowing that these are the only possi-

bilities which exist, we can easily construct all the possible sequences

which could have yielded the observed sequence. This type of logic leads

to a "hypothesis tree" for the estimator, and the discussion which

follows closely parallels the thoughts and notation of both Captain Meer

and Lieutenant Zicker (Refs. 5, 8, 9 and 18).

The hypothesis tree begins at the initial time t0 when no events

have happened. At some tl>t 0 an event is observed on the photodetector

array at location rl. As stated previously, this event must be either

0 signal- or noise-induced which leads to the two hypotheses shown in

Figure 2-2. Throughout this discussion, certain conventions are

employed to draw the hypothesis trees. First of all, assumed signal-

• induced events are drawn upward from a previous node, while noise-

induced events are displayed downward. The hypothesis sequence is

represented by hjN(t) where j=0 ,1 ,2 ,..,2 t) 1 , and N(t) is the total

C number of observed events. An entire sequence could be written as

hjN( " N(t) N(t)

h.N(t) {h N(t) , h ... (N(t)) (2-28)

t. All signal-induced events are represented by a 1 while noise-induced

events are marked by a 0. Therefore, for our first measurement in

Figure 2-2, h0
1(1) is defined as 0 while h11(1) is defined as 1.

2-12
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The benefits of this notation are clearly seen as we progress to

more measurements. At time t2 we detect an event at r2 " The hypothesis

tree expands as shown in Figure 2-3. Using the standard notation we

see that the hypothesis sequences which result are as follows:

h 02 =h {02(l), ho02(2)1 = {0,0} .

2 2 2

h1 {h1
2(1), h1

2 (2)} = {0,1}

2 2 2h2 {h(1), h2(2)} {1,0}2 2 h2()

h3
2 = {h3

2(1), h3
2 (2)} = {1,1} (2-29)

As can be seen by looldng at the structure of the hypothesis tree, the

number of hypotheses doubles with each measurement, yielding 2Nt)

hypotheses at time tN(t). We therefore expect memory and computational

loading problems if this growth is not restricted.

We now have a method of estimating the particle beam state i(t)

which incorporates the possibility of noise-induced measurements. Any

particular hypothesis corresponds to a specific sequence of signal- and

noise-induced events. Knowing the sequence, we can easily employ the

Snyder-Fishman equations, updating only where a signal-induced event is

hypothesized. If we do this for each possible hypothesis sequence

N(t) N(t)h.N  , we have 2 estimates of the same state variable x(t). As

seen in the general MMAE discussion, we can derive an overall estimate of

X(t) by probabilistically weighting the individual estimates. This con-

figuration could easily be represented by the equation:

2-14
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2 N~t)

X(t) : Z PrEhjiZ ' ]. (t) (2-30)
j=0

Pr(hj.Z N(t ) is the probability that hypothesis h. is correct given that . .

the sequence of measurements ZN-t) has been observed. x.(t) is the()t

estimate of x(t) assuming that the sequence h.N(t) was true. We could
3

write a similar equation for the covariance of the beam state:

2 N(t)_ I  ..

P(t) = Pr[h.jIZN(t)] {P.(t)
_=0 -3

[+j(t) (t)][ t(t) t)]T} (2-31)

hjN )(-'.''.3
where P.(t) is the covariance calculated when hypothesis h.N(t) is

assumed correct.

The particle beam MMAE has now been shown in its most general form.

There should be no question as to why this configuration was chosen;

however, there are two major areas which must be wrung out before our

discussion of the Meer filter is complete. First, equations for proba-

bilistic weighting factors Pr(hjIZ N(t)) must be developed if the MMAE

is to have any meaning at all. Second, some method of limiting the
C

filter sized must be created in order to implement the filter practi-

cally. The next two sections are devoted to these topics.

11.4 WEIGHTING FACTORS

In order to complete the set of equations for the particle beam

MMAE, the weighting factor equations must be developed. These equations,

in conjunction with the Snyder-Fishman equations of Section 11.2 and the

2-16 .~
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MMAE equations of Section 11.3, will allow us to specify the Meer filter

completely. The weighting factor equations which were developed by

Meer in his dissertation appear as:

Pr[h.N(t)IzN(t)] I s X or nN(t)-I (2-32)

xs' xn' and X are estimates of the signal, noise, and overall rate

parameters respectively (where X=Xs + Xn ' Pr(h. N(t )-l zN(t)'l) is the

probability of h.N t)'l before the most recent event was detected. X

appears in the numerator if h.N(t)(N(t))=l and X appears ifn

hjN(t)(N(t))=). Because of the recursive nature of this equation, an

entire history of measurements ZN(t) need not be kept.

Zicker was able to represent Equation (2-32) in a slightly different

way (Ref. 18). We can trace Equation (2-32) back to the probability

at t

Pr[hj0 1Z] = 1 (2-33)

*0The probability is 1 because there are no hypotheses at t=t O. Realizing...,-°'-

this initial condition, we find that Equation (2-32) is transformed

C into:

S. Ni stk,rk;w) II nk,-k;

Prh.jN(t) IZN(t)]= N.
Ph ZN(t) A(2-34)

i :=.1<"-

where S. represents the set of event times when we hypothesize a signal

being detected under hypothesis h.Nit).

2-17
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S. {k:h N(t)(k) : 1} {k1 , k2 . . . . . kq} (2-35) *•gt-

and N. represents the set of event times when we hypothesize noise being

detected under hypothesis h.N't"

Nj = {:h jN(t)(L.) 0 )} l2' .... , t p} (2-36)

Note that p+q=N(t).

The only values remaining to be specified in these weighting equa-

tions are the estimated Xn and Xs  To accomplish this, Meer postulates

an unobservable probability space Qs associated with the system state,

which maps into an observable space Q. Q is subdivided into three sub-

spaces:

=l x Q 2 x Q 3 (2-37)

l "2' and Q3 correspond to the randomness of the signal process, noise

process, and the hypothesis sequences respectively. Therefore, s and

X are generated by calculating the expected value over the appropriate

subspace: ._

Xs(t ,r;w) = EI{Xs(t,-r;w;wi)IZN(t)} (2-38)

Xn(t,r;w) = E2{rn(t,F;w;w2)lZN(t)} (2-39)

where EI represents expectation over wlca I and E2 represents expectation

over wEm2 . By assuming A, R, and H constant and deterministic, Meer was

able to represent the expected value as:

SXs = A exp T _

2-18
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Note that x.(t) is the estimate of the beam state derived from the

specific Snyder-Fishman estimate which is about to be weighted. Since L
VS.

the noise rate was assumed deterministic and constant over the entire

detector, the noise rate estimate X is equal to this same constant.n

11.5 LIMITING THE HYPOTHESIS TREE

At this point we have all the equations necessary in order to con-

struct a full-scale particle beam estimator. The Snyder-Fishman equa-

tions provide the propagation and update cycles for any particular

hypothesis sequence. Each estimate x.(t) based on h N(t) is then

weighted and summed to yield the particle beam state estimate x(t).

Similar comments could be made concerning the beam state error covariance

P(t). However, it is readily seen that at each new measurement, the

* N( t)
number of hypotheses doubles, yielding 2 possible sequences at

tN(t). It is therefore imperative that we limit the size of the hypoth-

esis tree to a particular depth D. When D=d, there is an upper limit of ,-. .

2d possible hypotheses at any time t. As noted in Zicker's thesis

*j
(Ref. 18), there are two methods for limiting the tree depth to D: the

Best Half method and the Merge method. Both techniques will be dis-

cussed in the sections which follow.

11.5.1 THE BEST HALF METHOD. The Best Half method is the tech-

nique used by Meer in his dissertation (Ref. 9). With this method we

let the hypothesis tree grow in the usual fashion until the number of

observed events equals D. At this point, turn to the weighting factors

to provide insight into the problem. We begin by dividing the hypothesis

tree in half. The upper half corresponds to the sequences of branches

which originate from a signal-induced event, while the lower half

2-19
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corresponds to the sequences of branches which originate from a noise-

* induced event. The two branches differ only in the hypothesis at the ,

first event time. We then look at the probability that the upper half

is correct by summing the weighting factors at time tD associated with
D -

* the upper half. Also, the probability of the lower half being correct is

calculated by summing the weighting factors at tD associated with the

lower half.

2D-1

Pr[UPPER HALF] = Z Pr[hjN(t)IZN(t)]

2D

i" (2-41)

Pr[LOWER HALF] = Z Pr[hN(t)IzN(t)]
j=O

Since these two equations must sum to 1, only one summation needs to be

computed. If Pr(UPPER HALF) is greater than Pr(LOWER HALF) we expand

* the upper half as usual while terminating the lower half. If

Pr(LOWER HALF) is greater, then the reverse is true. In either case

the remaining weighting factors must be renormalized so that their sum

C is again equal to 1.

An example of the Best Half Method is shown in Figure 2-4 for D=2.

The upper and lower halves are divided accordingly depending upon

whether the initial event was signal- or noise-induced. When the number I

of hypotheses equals 4, we must make a decision. The solid lines from

ti 1 to ti represent the upper half being more correct while the dashed

C lines mean that the lower half is preferred. In either case, note that
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at ti we have still limited the total number of hypotheses to 2D by

discarding or "pruning" either the solid or dashed branches of the TV

decision tree. Unfortunately, in order to limit the size of the filter

with the Best Half method, we have literally thrown away half the infor-

mation. Some means must be available for limiting the filter while not

discarding half the hypothesis tree. Zicker incorporated the laterna-

tive Merge method.

11.5.2 MERGE METHOD. The Merge method was initially proposed by h~.

Weiss and co-workers (Ref. 17) so that the information in the entire

time history of measurements could be somewhat preserved. With this

method we look at pairs of sequences to limit the size of the expanding

filter. As before, the tree grows as usual until tD. At this point we

pair all the hypotheses which are equivalent except for the earliest

retained event. The hypothesis pairs are represented as hjD and hkD

where j=0,1,...,(2D/2)-1 and k=j+2 /2. There are (2 /2) such pairs.

Since they differ in the earliest time event we see that

hjN(t)(N(t) - D + 1) = {}
(2-42)

hk (N(t) 0+ D:1) =1

We then take the weighted sum of the estimates associated with each pair

of hypotheses:

Ij(t): {Pr[hjTZn(t)]xj(t) + Pr[hkIZN(t)]xk(t)}/a (2-43)

P.(t) : Pr[hj 1 zN(t) ](Pj (t)_ + [x t)xzt)] ) (t) t ]T )~ ''" '....,

+ Pr[Phk(t) + [#k(t) - t)][7k(t) - xt)] )}/a (2-44)
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Pr[h 1ZN(t )]  Prhj N(t)] + PrEh ZN(t) (2-45)

In Equation (2-45), a is a normalizing factor so that the sum of the proba-

bilities of each new estimate will equal 1. An example of the Merge

method is shown in Figure 2-5 for D=2. Note that t i' represents an

intermediate step where the dashed lines merge. From ti. I the nodes

split as usual and at ti the total number of hypotheses is still 2

S11.6 SUMMARY *,,v

This chapter has been a complete discussion of the Meer filter

(Refs. 5 and 9) used to estimate the particle beam's centroid. We began

by discussing the measurement scheme and assumed state dynamics. These

dynamics were used in conjunction with the assumption of signal-induced

measurements to form the Snyder-Fishman equations. However, this assump-

* tion was unrealistic for actual implementation, forcing Meer to develop

an MMAE scheme based on an uncertain measurement model. However, the

number of models could easily grow without bound if we did not limit the

* size with either the Best Half or Merge method, so this is incorporated

for a practical filter.

With this state estimator in hand, we now set about designing a PI

C controller to regulate the beam and to track intended targets. The

following chapter reveals how this regulator and tracker will be derived.

IL
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III. PI CONTROLLER

The purpose of this chapter is to discuss the Proportional plus

Integral (PI) controller which will be used to direct the particle beam

weapon. In the first section we will look at regulation of the beam

itself. Here the controller is trying to maintain the beam at a particu-

lar setpoint (usually zero). After looking at the regulator problem,-
we turn our attention toward the tracking of a particular target. To

this end, the second section of this chapter is devoted to developing a

three-state acceleration model for the target as well as a Kalman filter

which is used to estimate the position of the intended target. With

models for both the beam and the target, we turn to Section 3 for a

development of the PI tracker.

Both the regulator and the tracker are designed assuming linear

models with quadratic cost functions. Using LQ techniques we can derive

steady state (constant) controller gains through the use of backward

Riccati difference equations. To this point we assume that the con-

troller has perfect access to the true states of the beam and target.

We can replace these true states with their best estimates using the

principle of assumed certainty equivalence (Ref. 4:Vol. 3). The particle

beam state estimate is provided by the Meer filter while the target state

comes from the Kalman filter. This step is necessary because it is

unrealistic to assume complete access to the true states of the system.

Throughout this chapter the reader is assumed to understand the

purpose of the cost function (performance index) as it relates to theCL

field of optimal control, in addition to being familiar with the

3--
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principles of Kalman filtering. An in-depth discussion of the quadratic

cost function (its meaning and uses) is provided by Reference 4 (Vol. 3).

For a rigorous development of performance indices in the field of optimal

control, see Kirk's text (Ref. 2). Here the reader will find how varia-

tional calculus techniques are used to obtain the optimal state trajec-

tory to satisfy the desired performance index. Kwakernaak and Sivan

(Ref. 2) also provide useful reference for this topic. For the theory

of Kalman filtering as well as examples of how these estimators are

used in the field of guidance and control, Maybeck (Ref. 4:Vol. 1) pro-

vides a thorough development.

111.1 PI REGULATOR

The purpose of the PI regulator is to guide the beam state to a .

particular setpoint Yd" When Yd equals 0, we are trying to keep the

backscatter indication of the beam centroid on the center of the

detector array. As discussed in Chapter 2, we are using a single posi-

tion state model for the beam dynamics: "

x(t) =- (t) + Bu(t) + Gw(t) (3-1)

where T is the time constant for the beam state dynamics, w(t) is zero-

mean white Gaussian noise of strength Q, and u(t) is the continuous time

control input which will be held constant over each control sample

period (At = ti+ 1 - ti) once the system is discretized. The first order

model was chosen because this is a feasibility study similar to Zicker's
.-.-.-. .e.

and Moose's work, and higher order models are not required at this level.

Since this is a regulator problem, there is no need for a target model.

Therefore, this topic need not be explored until the next section.
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Because we will want to apply sampled data control inputs at discrete

time intervals, the beam model should be discretized. The new beam model

looks like the following:

x(ti+I) = B(ti+l1ti)x(ti) + Bdu(t i) + Gd~d(ti) (3-2)

where

e At/T -.-.
( t+l,ti) =e (3-3)*B

Gd = I (3-4)

a.-. . ,kti+l '

Bd = f B(ti+I T)BdT (3-5)

and (ti) is zero-mean discrete-time white Gaussian noise of strength

t.t i+ I  -'' ;
1+1T T

Qd B C(ti+l T)GQG P (ti+I T)dT (3-6)

ti i1

For our purposes we can let B=1 in Equation (3-1). The value we are

attempting to control is

C (ti) = C (ti) (3-7)

where C=1 and ?(ti) is the beam position state.

There is one other idea which must be developed before we can begin

to derive the PI regulator--integral action. This particular design was

chosen because of its ability to maintain a constant setpoint (Y(t)=O in

C our case) with zero steady-state error even in the face of constant
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unmodelled disturbance inputs. This ability is known as "type 1" control.

* The portion of the P1 controller which gives it these qualities is the p

integrator. The integral term provides an integrated history of tracking

errors beginning at the initial time, thereby yielding a control input 6"4

0 even when there is no tracking error at the present time. Since we will

be dealing with a digital controller, true integration is not possible

and will be replaced by the pseudointegral or summation process:

q(ti+1 ) = q(ti) + [Yc(ti) - yd] (3-8)

The general structure of a PI controller is shown in Figure 3-1. The

1" most important feature of this pseudointegral term can be seen in this

diagram; when Yd is not equal to 0, even when yc = so that the input
Yd Y-d

to the pseudointegration is zero, nonzero inputs are still applied to

* the system by this channel so that in equilibrium Yc = This is the

essence of a "type 1" system.

For the sake of PI controller derivation via LQ synthesis, we can

now combine Equations (3-2) and (3-8) into the augmented state space

system:

F 71 F}F 1 [ 1:. 1
I[(t i+) B B(t+ti) 0  (tj) 0 d u(ti) d wd(ti) Yd

I L

L• °(3-9)

14L Written another way, this equation gives

a(t i+) + f-a(ti) + Bdau(t i) + Gdawd(ti) - D.yd (3-10)
C
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With Equation (3-10) in hand, we now set about deriving the control

u(ti). To accomplish this, some decision as to the optimal state

trajectory must be made.

The purpose of optimal control theory is to derive an optimal

(feedback) control law u(ti) which will minimize a specific performance

index J. Once applied, this optimal control law produces the optimal
,

state trajectory x (ti). The performance index we will employ is the

quadratic cost function:

N J x(ti) X 0 (ti -u"t.

1T F iF 2

(tN+1) llf 0 (tN+I .L (tN) 22 q (t~ (3-11)

This can be written another way as

N
J = I tl)Xx (t.) + UuZ(ti)1 + 7aTtN)X a(t ) (3-12)

2L a I -a 1 a N+1-fa N+1) -0

By minimizing J we are choosing the u(ti) which will drive X a(t.) ."--

toward a vector of zeros: note that any deviation of the vector Xa(ti)

from 0 tends to increase the cost J. However, there is a tradeoff in

that there is a penalty if the control inputs u(ti) are nonzero. X
it11

and X are weighting factors on the beam state and tracking error

pseudointegral respectively. U weights the amount of control energy

expended, and the function outside the summation is known as the terminalICI
cost. If U were set to 0, the controller would try to drive the errors

3-6
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to 0 in the first sample period, thereby applying exorbitant energy to

minimize the cost. If U is set too large, the optimal solution is no

control at all (open loop) asymptotically as U approaches infinity.

Therefore, some compromise must be reached.

Through the use of dynamic programming, we can find the optimal

u(ti) to minimize the cost function in Equation (3-12) given the

dynamics constraints in Equation (3-9). This controller has the general

form

i )  -c (tixa(ti ) +Eyd (3-13)

From Maybeck (Ref. 4:Vol. 3) we find that the gains in Equation (3-13)

are given by

G () Gcl(ti)[Gc2(ti)] : [U + TK""" [T K (ti+1

(3-14)

E=CG (ti) -G (t)K 1 (t)Kc (T ) (3-15)ci i c2i c22i c12i 12 "-22

where K is derived from the backward Riccati difference equation

TKct i 0 X + --aT11( P(t.+1t ) Kc ( t i + 1 ) -_a( t i + 1 , t i )  ''"¢'

C
T*-[B'T aKc(ti+l )"a(ti+l1ti )3 Gc(t i ) (3-16).

solved backward from Kc(tN) =Xf and

C !21 '12 C ~~i1, 1  d (3-17)

3-7
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C

A through derivation of Equation (3-17) is given in Maybeck (Ref. 4:

Vol. 3). It is founded in part on the idea that we need a nominal

u (ti) which will produce the equilibrium solution x(ti)=x thus0i
yielding Yd = Cx0." Note that in Equation (3-16) we are guaranteed a

solution to the Riccati equation (Ref. 4:Vol. 3) because our system is

both stabilizable and detectable. For time invariant system models and

constant weighting matrices, the solution often consists of a terminal

transient followed by steady state behavior as shown in Figure 3-2. It ".. -

was felt that these steady state values would produce desired behavior

over the time period of interest. Therefore, the steady state (constant)

controller gains are used for all time.

111.2 TRACKER MODEL AND KALMAN FILTER

Before beginning a development of the tracker we must first have a

model for the beam's target. In the case of Zicker and Moose (Ref. 18

and 10), the target was represented by a zero-mean first order Gauss-

Markov position process, as produced by the first order dynamics

equation:

(t) = - x(t) + Gw(t) (3-18)

IC
where x(t) is the position state, T is the position correlation time

constant, and w(t) is zero-mean white Gaussian noise of strength QT"

Obviously this is a very benign target as shown in Figure 3-3. Such a

simple model was chosen because Zicker and Moose were attempting first-

cut feasibility studies, and there was a desire to avoid overly complex

controller designs.

3-8
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For this thesis the model for the target is a first order Gauss-

* Markov acceleration process shown in Equation (3-19):

whrex Xt) A(t) X [ i ] [v(t + L!] wT(t) (3-19)

where Xp(t) is the target position state, x (t) is the target velocity

state, Wt) is the acceleration, T is the acceleration correlation time

constant, and wT(t) is zero mean white Gaussian noise of strength QT

associated with the target model (and thus the subscript T). The new

model is a much more realistic target and has been used successfully

for many applications. A typical position state trajectory is shown in

Figure 3-4. As opposed to Figure 3-3, the target is seen to have a

divergent nature (in this instance it goes to --), thereby making a more

difficult tracking problem. Note that there are now poles at the origin

of the s-plane. Since there are no control inputs that directly affect

the target and this system is inherently astable, we see that the system

is no longer stabilizable. Without this condition we are no longer

guaranteed a solution of the steady state Riccati equation used for
ic LI

generating controller gains. This problem will be addressed further in

the next section of this chapter.

Equation (3-19) has the special form of a linear time-invariant

system driven by white Gaussian noise. Further, assume that there will

be discrete-time measurements of the target position state as shown by

the equation:
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Z (t i ) :1 1 0] |x(t i )  + V(t i )

XA(ti (3-20) ." -

where v(ti) is discrete-time white Gaussian noise of variance R and is

(t). We%assumed to be uncorrelated with the dynamics driving noise w(t). We-

now have enough information to derive a state estimator using standard

Kalman filter techniques. The state estimates and self-computed state

error covariances will propagate between measurement times as:

: , x(t i-) :_T(ti~ti_1) (ti. I )

P(t) (t+ T

t.ti T T

+ f jT(tiT)GT(T)QT()GT T)ITT(tiT)dT (3-21)

where the subscript T denotes "target". At measurement times the esti-

mates and covariances are updated as:

x(ti +) :(ti) + K(t.)Ez(ti) - HT(ti)-x(ti-)]

C P(t. P(ti) - K(ti.)HT(ti)P(ti)

K(t) = P(t)HT(ti ti)T (ti) + R (ti) 1"  (3-22)-1 -- i-i-i-i Ti

The initial conditions are given as:

:: P~xto) = ..o.... :-i-

P P0

3-13
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Note that as measurement noise variance R(ti) is increased, the filter

places more emphasis on the filter's own dynamics model. If the dynamics

driving noise strength Q is relatively high, the filter places relatively

heavy emphasis on the incoming measurements z(ti). These trends are seen

0 by examining the Kalman filter gain (K(ti)) in Equation (3-22).

111.3 PI TRACKER

Now that there are equations for the beam and target, we can form

a new augmented state space which contains both sets of variables:

t -f 0 0 o x(t) 1 w(t)T
(t) 0- 1 0 Xp(t) 0 0

P + u(t) +"P +

v(t) 0 0I v(t) 0"
1 "" 0

.A(t) 0 0 0 RA t' WT(t)

(3-23)

where w(t) is zero-mean white Gaussian noise of strength Q, and wT(t) is

zero-mean white Gaussian noise of strength QT" The inclusion of the

terms E1 and c2 is necessary in order to force Equation (3-23) to be

stabilizable and detectable. Otherwise, the system is astable due to
C

poles at the origin of the s-plane. Values of Ei=e2=.0001 were chosen to

ensure at least an order of magnitude difference between the poles forced
1,

away from the origin and the time constant terms -T and -1. Note, this

approach applies to the controller gain development via Riccati equation

solution exclusively; all filter and dynamics equations assume pure

integrations of acceleration and velocity states.

3-14
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We now set about discretizing the system in Equation (3-23) and

* including the pseudointegral terms:

x(t i+)1 -~'0 0 0 F(ti) -B d- !(ti)Z

x(t )0' x~ 1t*~ pi+1) -P0xt.
x(t ) 1 ±T_ x (t.) + 0 U(tj)+

-v i+1 T V 1

WAti+1) 0 :0 WAti) 0 dTt)

*q(t i+1) 1 -1 0 0 1 q(ti) 00

(3-24a)

where d(ti) is zero mean discrete-time white Gaussian noise of strength

and ~ t)is zero mean discrete-time white Gaussian noise of

strength ~d* The term u(t.) is the control input used to achieve the

desired system characteristics. This equation can be rewritten as

(t~ (3-tbWAti+1) ! .A(tilt A* i 7~t) + --d u(ti) + -4A ti) (32b

*In the case of a tracker we are trying to drive the quantity

e(ti) x(ti) - x (t.) (3-25)-Pi

Ctoward 0so a quadratic penalty is placed on this error, as: I.

1 2 1e~.) 4x(t) x (t.)]F -Xli
X 11i ill [x (ti)] (3-26a)

Therefore, the performance index used to derive our new controller

1C must include this error term. The new cost function upon which the

3-15
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deterministic optimal LQ controller is based will be

N X -X 11  0 0

-Xl1  Xll 0 0 0 ' -

2 =1 i AT(ti) 0 0 0B 0 7A(ti) + Uu2(ti)

0 0 00 0

0 0 0 0
_ _

Xllf -X1If 0 0 0

_X l1f X11f 0 0 0 1

1 -T 0 0tN 0+2 A(tN+1)  0 0 0 A(tN+1 )

0 0 00 0

0 0 0 0 X55f (3-26b)
L

Note that since xv(ti) and xA(ti) cannot be affected by control, they are

not weighted into the cost function. A discussion of how X and X55

affect the resulting controller performance is given in Chapter 5. This

equation can also be written as

2~U (t0
7( 1T(t) x(

- 1 A'(i Xa xA(t.) + 2 2A N+1) -A A tN+1

i=O-

(3-27)

For steady state constant-gain designs, we let N go to and ignore the

terminal transient in the resulting Riccati difference equation used for

controller gain computations.

By the use of dynamic programming we find that the controller that

minimizes a cost of the form of Equation (3-27) is given as:

3-16
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u(ti) -GcX(ti) - G c2Xp(t i) - Gc3xv(ti) - Gc4xA(ti) - Gc5q(ti) + Eyd

(3-28)

as is consistent with the structure of Equation (3-13). The term is

a nonzero setpoint input. If the quantity in Equation (3-25) is to be *-

zero, then Yd is 0. If a particular separation is desired between the

beam centroid and target (as to locate on a point offset from the cen-

troid by a known amount), Yd is set accordingly. The controller gains

of Equation (3-28) are given by

T~

G A =[GclI G G G 1 = U + T K I--cA c c 1 c3' c4 G c5 _-d A A1iLA -cA
0 (3-29)

where BdA and are the same as in Euqations (3-24a/b) and KcA is given

by the algebraic Riccati equation (the backward Ricatti difference

equation in steady state condition; analogous to Equation (3-16) but

with successive values of K equated to each other):

SK T -cA (3-30)

Finally, the controller term applied to the nonzero setpoint input in

Equation (3-28) is given as

K T
KcA15 

.5
* * r * * -1 KcA25 125

E = [G G c4G " Gc5 K c11
c, c2i c3 c4 c5 cA55 KcA35 1135 55

KcA45 1145 ..

(3-31)

3
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where ,,

-1 l

-i .... 15 "(DB 'I) 1) 0 0 19 Bd

II- 1) +T I  101
-I- -

_115i " 1155 J-1 0 1 1 (3-32)

The term B is the state transition matrix of the beam and !T is the

state transition matrix for the target model which included imperfect

integrations as in Equation (3-23).

III.4 SUMMARY

This chapter has been a presentation of the PI controller to be used

* in this thesis. First, PI regulator equations were developed in a manner

similar to that of Moose (Ref. 10). Second, the target model was pre-

sented along with the Kalman filter equations used to estimate the

* target's acceleration, velocity, and position states. Finally, the PI

tracker was developed. When deriving the tracker controller gains, it

became necessary to force the target model integrator poles inside the

C left half plane (or the unit circle if we are in the z-domain). This

step was necessary to guarantee stead3- -'.ate gains from the matrix

Riccati equations. Once these gains are derived they are placed in the

PI structure as displayed in Figure 3-1. Since access to the true states

of the system is not realistic, the Kalman and Meer filters are embedded

as shown in Figure 3-5. -' *

C
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IV. ANALYSIS TOOLS AND METHODS "

Now that the particle beam PI controller has been designed as well

as the filters for estimating the states of the beam and target, atten-

tion can now be focused on the analysis tools and methods which are

used to evaluate the performance capabilities of those algorithms in

Chapter V. As noted at the end of Chapter I, the filter/controller

structure is tested using Monte Carlo simulations because covariance

analysis techniques are impossible for the particle beam problem. The

Monte Carlo runs produce the sample statistics required to analyze the

effectiveness of the system.

This chapter is divided into four sections. The first section

gives a general description of the analysis tools used in this thesis

as well as a brief history of their development. The second section

describes the method in which these tools are used to form the perfor-

mance parameters of the system (RMS errors). These performance param-

eters indicate how well the filter/controller combination is behaving

under various conditions. The third section describes the sensitivity

analysis which was performed on the corrected form of the PI controller
C

originally conceived in Moose's thesis (Ref. 10). The remaining section

addresses the robustness study which is carried out using the PI tracker

described in Chapter III. This controller incorporates a first order *" -

Gauss-Markov acceleration model for target dynamics.

IV.1 ANALYSIS TOOLS.-1

C The analysis tool for the problem has been modified several times

before reaching its final form. At the heart of the simulation is a

--4-1
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software package by the name of SOFE: Simulation for Optimal Filter

Evaluation (Ref. 11). This program was written by Stanton H. Musick of P

the Air Force Avionics Laboratory to analyze the performance of Kalman

filters. SOFE allows the designer to embed a truth model (for accurate

real world simulation) as well as a typically simpler design model (upon

which to base a filter) into the software. Propagation of the state

estimates and filter-computed error covariances is achieved by inte-

grating these differential equations which describe the quantities from .

one sample time to the next. Updates are performed at prespecified

sample times. These differential equations have the general form

(t) = f[_X(t),-u(t),t] + G(t)_w(t) (4-1) ---{

where w(t) is zero-mean white Gaussian noise of strength Q. SOFE will

0 solve Equation (4-1) by first solving the deterministic differential

equati on . 4_-

x(t) = f[(t),-(t),t] (4-2)

between sample periods and incorporating the stochastic term as

t= xt + GAUSS (0, SNDEVQ) (4-3)

where x is the solution of Equation (4-2) after each sample period,t_

and the expression GAUSS(,-) is a vector random number generator term,

where the terms within the parentheses indicate zero mean and standard

deviation respectively. The SNDEV term is the standard deviation ofQ
2d (i.e., a matrix square root of 9d) where _d is the second moment of

C the equivalent discrete time noise to represent the effect of G(t)w(t)

4-2
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over one sample period. The general measurement equation is given as:

Z(ti) = xt[(ti),t i] + Kt(ti) (4-4)

*. * %

The equation used by the truth model to supply noisy measurements is

z(ti) = GAUSS [-ht(t(ti),ti), SNDEVR] (4-5)

The term [x t(t i)'ti] is the true measurement that would be seen if the

measurements were not noise corrupted. SNDEVR is the standard deviation

of Rt where Rt is the discrete time variance of the measurement noise

process 4. Once these measurements are made, they can be fed to the

Kalman filter which estimates the states based upon its own dynamics model

and internally computed error covariances as well as the measurement

residuals. Several sample runs can be generated (vs. time) and the cor-

responding states and covariances are stored in an external file.

In order to process this data from SOFE, the postprocessor SOFEPL

was written (Ref. 12). SOFEPL takes the data from several SOFE runs

(such as state values and error covariances) and forms the statistics

desired by the user. These statistics include such values as means and

standard deviations of states and errors over time. With SOFE and the

postprocessor SOFEPL, we have effective tools for evaluating the true
C

performance of a Kalman filter, assuming truth model adequacy as described

at the end of Chapter I. However, when dealing with the particle beam

problem, a Meer filter rather than a standard Kalman filter must be used

to estimate the position state of the beam.

When Meer set out to use this software package for the particle

beam application, certain modifications were required to be made. As
C

noted in Chapter II, propagation and update equations for the Meer

4-3
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and Kalman filters are exactly the same. The differences arise at the

measurement times. SOFE expects measurements to occur at prespecified

discrete-time intervals, whereas in the particle beam problem, measure-

ments are only available when photo-electron events occur. The events

behave as a Poisson space-time point process. Even though the beam

exhibits a spatially Gaussian behavior across the detector array, the

event times are represented by a Poisson distribution. Meer wrote soft-

ware which generated event times in a Poisson manner, while simultaneously

distributing the events in a Gaussian manner across the detector. He

also included a subroutine for filter "pruning" using the Best Half

Method as discussed in the fifth section of Chapter II.

After Meer's work, Zicker (Ref. 18) had the task of incorporating a

proportional gain controller into the system in order to regulate the

beam to a desired point as well as subsequently to track an intended

target. Zicker's primary contributions to the software were the addition

of the Merge Method of filter "pruning" (as discussed in the fifth section

of Chapter 2) and subroutines for calculating the controller gains and

feedback control inputs. Zicker's main problem involved the calculation

of control inputs. These inputs were added to the system at pre-specified

c intervals; however, since the measurements of the events are randomly

separated in time, one cannot anticipate having an updated state esti-

mate x(ti+ ) at each control application sample time, to form

c u(t i ) -G(ti) (t i ) as in the standard LQG control problem. To

address this problem, Zicker propagated the Meer beam estimate to the

control sample times so that the estimate at the control time would be

C appropriate (Ref. 18).

4-4
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The next modification to the simulation software was made when

Moose (Ref. 10) added a Pl controller to regulate the beam and track an

intended target modelled as a first order Gauss-Markov position process.

The control gain subroutine and feedback control subroutine needed

• rederivation; however, no other major changes were incorporated. It was

discovered later that the cost function used to calculate the controller

gains was in error, so the validity of the results came into question.

The final modification made to the simulation software comes in-,

this thesis, in which a first order Gauss-Markov acceleration process is

used to describe the intended target more accurately than is possible

with the simplistic target model used for the initial feasibility

studies. To accomplish this end, the controller gain and feedback sub-

routines are changed as well as the order of the truth adn filter models.

With the simulation tools finally in hand, we can set about describing

the analysis method.

IV.2 ANALYSIS METHOD

The purpose of this section is to describe the performance param-

eter used in this thesis--root mean square (RMS) error. The previous

section describes the tools available to compute the RMS error. This
C

section begins by describing how the data is collected by SOFE, as well

as which data is retained and which is not. Next, we look at what RMS

errors are and why they are used. Finally, we look at how the software

is adjusted to accommodate RMS errors.

Each Monte Carlo simulation involves runs which begin at zero

seconds and conclude at 100 seconds. Several runs must be carried out
C

due to the statistical nature of our performance analysis. Zicker
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showed that 200 runs was enough to generate truly representative sta-

tistics for our problem (Ref. 18). The more runs we have, the more

closely the computed sample statistics will represent the true ensemble

average statistics. Once the data is collected in SOFE we turn to

* SOFEPL to calculate the time histories of RMS errors and then also the

time-averaged value of these RMS errors.

The error for the tracker problem is the difference between the

* target and beam position states:

e(ti) : x(ti) - Xp(t i) (4-6)

where x(ti) and xp(ti) are defined in Equations (3-1) and (3-19), h'?-q

respectively. SOFEPL can take the errors at each time during a run and

average them over all the runs (sample ensemble average). Therefore,

0 there is now a mean value and standard deviation for each error of

interest, for each time ti

At this point SOFEPL can generate the RMS errors for each time t.

by using the equation 1

RMSe (ti )  me2 (t) + e 2(ti) (4-7)

C The terms me(ti) and ae(t.) are the mean error and standard deviation ILL
Th trm me (1) n ae 1

of errors for each time ti. Now that we have a history of RMS errors

versus time, SOFEPL computes the time average. Since the earlier times

involve a great deal of transients, we will only look at times where

ti > 50 seconds. During these times the filter/controller has had time

to move toward its steady state solution. We now have one RMS error

value representing 200 runs where the data was averaged only over the

4-6
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time interval corresponding to ti > 50 seconds. If time averages of

actual errors had been used to evaluate the performance instead of time

averages of RMS errors, a positive error in one term in the averaging

sum might cancel a negative error in the next, therefore giving lower

number averages of the errors. Thus, time-averaged RMS errors are an V _

appropriate measure of actual performance.

SOFEPL is designed for use with errors between the truth and filter

model, i.e., to evaluate filter estimation performance instead of control

system effectiveness. However, the error we use in Equation (4-6) is

between the true beam and target position. Fortunately, SOFEPL is easily

modified to accommodate our needs. By the insertion of two simple sub-

routines, the postprocessor is capable of computing the RMS errors involved

in Equations (4-6) and (4-7). The first subroutine is used to store

values needed for the calculations. The second subroutine is used to

calculate the means and standard deviations (Ref. 12). With this capa-

bility in hand, we are now ready to look at exactly what types of

studies are to be carried out in this thesis.

IV.3 SENSITIVITY ANALYSIS

The first task to be carried out in this thesis is to perform a
C

sensitivity analysis on the corrected PI controller originally designed

by Moose (Ref. 10). As noted before, the controller, Kalman filter,

and truth model all assume a single-state Gauss-Markov position model.

To run a sensitivity analysis, we begin by choosing the weighting matrices

of our cost function based upon the controller's performance at a nominal

parameter setting. Once the weighting matrices are chosen, we set about

varying one parameter at a time (in the truth and filter model) while ..-.-

4-7
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leaving the other parameters at their nominal values. In this manner,

the controller effectiveness for several "real-world" environments can be

studied. Specifically, the filter model is told what the environment -. -

looks like, and controller effectiveness can be studied, parameterized by

important descriptors of real world characteristics.

The sensitivity analysis completed in this thesis involved only the

parameters associated with the target model because Moose had already

accomplished a correct analysis for the regulator parameters (Ref. 10).

The parameters associated with the beam are as follows: standard devia-

tion of process noise, (/Q-), beam dispersion (R), time constant (T),

filter depth (D), the expected number of signal events (count), and the

detector length (L) These parameters were discussed previously in the

first section of Chapter II. The standard deviation of process noise

indicates our confidence in the model, and a value of 0.2 was chosen, in

correspondence with the nominal value previously identified. Beam dis-

persion indicates the spread of signal events across the detector. As a

nominal value, R=0.5 was chosen. The time constant of the beam was 20

seconds, the depth was made 3, and the length of our detector is 10 cm.

The expected number of signal events was a value of 100 during the

C 100-second interval of time for each run. In addition to these, it was

desired to have a parameter which indicates the relative frequency of

occurrence of signal and noise events. The signal to noise ratio is

given as

SNR = A (2rR)
XnL (4-8)

C
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where A and R are from the signal rate parameter given in Equation (2-1),

L is the detector length and xn is the noise rate parameter (constant).

The parameters associated with the target are as follows:

acceleration time constant T, measurement noise variance R, and dynamic

driving noise strength QT• Each is defined in the third section of F.

Chapter 3. These are the parameters to be varied in the sensitivity

analysis. The dynamic driving noise strength indicates our confidence

in the target dynamics model and has a nominal value of QT = 0.1.

Measurement noise variance R indicates that our sensors are noise-corrupted;

the nominal value is R = 0.5. The target time constant indicates the

maneuverability of the target and will be set to 10 seconds. Because the

fastest transient at nominal conditions has a time constant of 10 sec-

onds, the sampling period of the Kalman filter and feedback control period

will be set to 1 second. Shannon's sampling theorem dictates that there

should be at least a factor of two difference between sample rate and

the highest signal frequency content of interest; however, the engineer-

* ing rule of thumb is a factor of ten.

IV.4 ROBUSTNESS ANALYSIS

The final topic to be covered is the robustness analysis of this

thesis. When a filter and controller are designed, they assume that

the system model adequately describes what actually happens in the real

world. By varying the truth model without telling the filter/controller,

one can determine how well the design stands up against a changing or off-

design real world application. During this thesis effort, two different

types of robustness studies were carried out. First, the corrected PI
C

controller of Moose was tested by inputting constant and sinusoidal

4-9
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disturbances into truth model beam equation without telling the Meer

filter (or, equivalently, into the target position simulation without

telling the Kalman filter). Second, the PI controller which incorporates d

a first order Gauss-Markov acceleration model for the target was analyzed

by varying target parameters in the truth model without telling the

Kalman filter. In order to recover some of the robustness qualities

inherent in full state feedback, Loop Transmission Recovery (LTR) tech-

niques (Refs. 6 and 16) are applied. Both of the analysis techniques -i

will be described in this section.

The primary purpose behind the PI controller structure is to allow

tracking with zero-mean steady state errors even in the face of

unmodelled constant disturbances. The reasoning is discussed in the

first section of Chapter III. There are basically two types of dis-

turbances added to the truth model of the beam: a constant disturbance

and a sinusoidal disturbance. These were incorporated into the truth

model as follows:

x(ti+ 1) : (ti+l,ti)x(ti) + BdU(ti) + d(ti) (4-9)

where

C d(ti) :d (constant) (4-10a)

d(t1) dosin w (t) (sinusoid) (4-lob)

The constant disturbance is included in order to evaluate the tracker's

performance even in the face of unmodelled constant disturbances. The

sinusoidal errors are included to see how the system responds to dynamic

disturbances such as target jinking.

4-10



The second robustness study in this thesis is carried out after the

* new target acceleration model is included in the system. However, the

study is dramatically different from that in the previous section on

sensitivity analyses. Here we are changing target parameters in the

* truth model without telling the Kalman filter. In other words, the

target may be vastly different from that which is assumed in the design.

If we were to pull out the Meer and Kalman filters and say that the

* controller has complete access to the true states of the system, the

system would be inherently robust. However, this quality is lost when

the true states are replaced by their best estimates as supplied by the

filters. To recover this robustness quality, Doyle and Stein (Ref. 16)

propose the addition of white Gaussian noise at the control input poi-ts

of the system. This Loop Transmission Recovery (LTR) technique is actu-

ally derived for continuous-measurement LQG problems; however, we apply

it in an ad hoc manner to this problem involving space-time point process

measurements. Whereas before the strength of the white Gaussian noise

for the beam was Q, it is now

V Q + qB V BT (4-11)

where V is the noise strength of the white Gaussian noise inserted at

the control input points; here we use V = 1. B is the input matrix, and

q is scalar. According to Doyle and Stein, as q goes to infinity, the ...

full state feedback robustness properties are recovered, while the per-

formance around the nominal conditions is degraded, because of the re-

sultant mistuning of the filter for design conditions. To see how this

technique is used on higher ordered systems, see Maybeck, Miller, and

4-11



Howey's paper (Ref. 6) on the robustness enhancement of their flight

controller design as well as the original LTR references (Ref. 16). In

general terms, the inclusion of the added noise of Equation (4-11) is

telling the filter to place more weighting on the measurements and less

on its internal model. Note, since the only input to the system is

through the scalar beam dynamics equation, it appears as though we are

simply adding more process noise to the system. However, this is rarely

the case with an LQG/LTR design, and then the specific structure of

adding noise at the control input points (i.e., changing Q by a scalar

times BVBT rather than just arbitrarily increasing ) becomes important

to robustness recovery.

IV.5 SUMMARY

The purpose of this chapter was to describe some of the tools and

analysis techniques to be used in this thesis. Monte Carlo runs are

performed on a version of software known as SOFE while a program named

SOFEPL is used to compute the RMS errors. Two different types of analy-

sis were performed during this work. First, a sensitivity analysis was

run on the corrected PI controller originally designed by Moose. Second,

robustness studies were performed on the corrected PI controller as well

as the controller incorporating a target acceleration model. Unmodelled

disturbances were placed in the former while truth model parameter

variations were performed during the latter. LTR techniques were

applied in an effort to recover much of the full state feedback robust-

ness. The results of these studies are shown in the following chapter.

C
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V. RESULTS

Results of the analysis techniques presented in Chapter IV will now

be examined. First, results using the controller based on a first-order

Gauss-Markov position model are studied. This is the corrected version

of Moose's controller (Ref. 10). Included in this presentation will be

a sensitivity analysis as well as a robustness study where disturbances

are added to the truth model without telling the filter. Second, results

using the controller based on a first-order Gauss-Markov acceleration

model will be investigated. This robustness study involves changes in

certain parameters within the truth model without telling the filter.

Loop Transmission Recovery (LTR) techniques are used to recover some of

the robustness characteristics which are lost when true states are

replaced by their best estimates in the feedback loop.

At the beginning of each of the two major sections, the choice of

proper weighting matrices is discussed. There are major insights to be

gained by varying the weighting elements and seeing how the tracker

reacts. To view this, plots are given to show target and beam position

versus time. These are the only plots in this chapter where the actual
C

run is shown. In all the other figures, RMS errors are displayed versus

the particular parameter being varied. It is important to realize that

each point on each graph represents an ensemble average of 200 runs, and

then a subsequent temporal averaging over the time period of interest

(50 seconds ' t < 100 seconds).
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V.1 FIRST ORDER GAUSS-MARKOV POSITION MODEL

V.1.1 CHOICE OF WEIGHTING MATRICES. To examine the choice of

weighting factors, we must first write out the cost function for a

PI Tracker which incorporates the first order position model for the

* target.

_ xti] IF 1 --
_ _ X 11  -X11  0x(t.i)]J= 1  2-.

Xe (ti) -X11  X11  0p X(ti) + Uu2(t i)

q(ti) _ _X33 Lq(ti)

x(tN+1) X lf "XhIf 0 X(tN+1 )

+ rx-( X Xf 0 x.(t

q(tN+ I) 0 0 X3 3f q(tN+I) (5-1)

* Note that in the constant controller gain case, there are an infinite

number of terms in the sumnation and the terminal cost is omitted. The ,,-

X terms weight the position error between the beam and target at time

t i while the X33 is used to weight the integration value (i.e., the
*.-..

history of errors). If X is larger, this is saying that the controller

should place greater emphasis on minimizing the integral of past errors.

Therefore, the best response to a large positive error at time ti is often

a large negative error at time ti+ I  This causes a very oscillatory

response, as shown in Figure 5-1 (note the large initial overshoot). Th.?

oscillation provides speed to the response; however, the ringing errors

are unacceptable. To taper the response while maintaining its under-

damped (oscillatory) nature, X is increased. The result is shown in

Figure 5-2. The initial overshoot has been decreased considerably.
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Ideally the X term should be on the order of at least a factor of 10 I

above X33 to provide the desired nature of the response. The actual

values chosen are Iii 100 and X 33

V.1.2 PARAMETER SENSITIVITY. A parameter sensitivity analysis is PI

carried out on the PI controller described above. Only the tracker

parameters are varied because the parameter sensitivity of the regulator

was carried out correctly in Moose's thesis (Ref. 10). Th. parameters*
to be changed are QT' R, and T of the target truth and filter models. .

These parameters are explained in Equations (3-19) and (3-20). They are

varied one at a time while the others are held at their nominal values.

In this manner, we see how the system performance is affected by the .

parameters of the system.

SENSITIVITY TO QT The parameter QT is an indication of how

confident we are of the target model being correct. As QT is increased,

the target's position becomas more dynamic due to the fact that the

strength of the white noise driving term is increasing. Therefore, we

expect the tracker RMS tracking error to increase as QT is increased.

This trend can be seen in Figure 5-3. As the driving noise is increased

from .01 to 1 we see that the beam is having more trouble tracking the
C

increasingly dynamic target. In the figure, "state feedback" refers to

the fact that the controller for those simulations is artificially assumed

to have complete access to the true states of the system, whereas "filter

feedback" means that these true states have been replaced by their best

estimates as provided by the Meer and Kalman filters. This notation will

be used throughout the analysis. The RMS errors are considerably higher
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for filter feedback because performance is always degraded when state

• estimates are used rather than the true values.

SENSITIVITY TO R. The parameter R is an indication of the level

of noise corruption in the target measurement model. As R increases, our

* confidence in the accuracy of measurements decreases. If the true

states are fed back to the controller, variations in R have no effect

because the Kalman filter is out of the control loop. However, if

]* filtered states are provided to the controller, we expect an increasing

R to yield increasing RMS errors for the tracker. By turning to

Figure 5-4, we see that this is indeed the case. The state feedback I
controller is unaffected by changes in R when larger values of R are
used.

SENSITIVITY TO T. The parameter T is an indication of how

9 fast the target's velocity can be changed. If T is increased, there is

more persistent motion once it is established. If T is decreased,

* velocity can change rapidly. To see how the parameter T affects RMS

* errors, turn to the RMS position equation for the target:

(RMS position) 2  -2 )(5-2 )...,

Again we see that RMS error is directly linked to the time constant

T. By examining Figure 5-5, we see that this logic is correct, and once

again state feedback outperforms filter feedback.

In this diagram, T is varied from 5 to 50 seconds. At T = 5, it

is necessary to reduce the measurement sampling period and control input

intervals to 0.5 seconds in order to have the sampling rate a factor

C of 10 larger than the fastest transient in the system. All other points

5-7
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used sampling rates of 1 second. This is the cause of the dramatic

change in the figure below T = 10.
V.1.3 ROBUSTNESS TO DISTURBANCE INPUTS. An important question to

ask when designing the filter/controller is how the system will hold

up against variations in the truth model which are not known to the

filter. One such variation is the addition of disturbances into the

truth model beam equation. Part of the justification for going to the

* PI controller configuration is so that unmodelled constant disturbances

to the truth model as well as the addition of sinusoidal disturbances

will be addressed in this subsection.

CONSTANT DISTURBANCES. When constant disturbances are added

to the system, we should see the controller at least attempting to main-

tain track with zero steady state error. This is due to the "type 1"

characteristics brought about by integral action (see Chapter III). The

PI controller is run with several values for do and the results are

shown in Figure 5-6. By observing the lower plot in the figure ,we note

0 that as d is varied between 0.0 and 4.0, the tracker full-state feed-

back RMS error increases by only 2.4 cm. Therefore, we see that the

constant disturbances are not having a severe impact on the RMS error.

c The result is very different with the filters in the loop. With this

constant disturbance affecting the true states of the beam, the filter

begins putting out erroneous state estimates as well as erroneous con-

trol inputs based on their estimates. Therefore, the filter feedback

performance is degraded much more than what we see for state feedback.

SINUSOIDAL DISTURBANCES. Another interesting case to consider,

C from the standpoint of the designer, is the addition of dynamic inputs
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C, .

into the truth model system. These unmodelled inputs are assumed to take

* the form of Equation (5-3):

d(t) = do sin wot (5-3)

where d0 is the maximum amplitude of the disturbance and wO is the fre-

quency in rad/sec. This might represent unmodelled target jinking for

instance. No longer do we have insights to say beforehand what the

*O results should look like. In Figure 5-7 we see the effects of letting [.

d be 1 cm and varying w0 from 0 rad/sec to 5.0 rad/sec. At the lower

frequencies, the RMS errors are not increased dramatically for the full

C . state feedback case. However, when filter feedback is used, performance

is degraded severely (at low w0 ). The reason is that the persistence of

a slowly varying nonzero disturbance is inducing poor state estimates in

0 the filter. Without accurate state estimates, we cannot hope to track

the target. It is suspected that LTR tuning might improve performance

at the lower frequencies; however, there was not enough time to do this

* here (see Chapter VI). As frequencies increase, so does the performance

of the controller. This is due to the fact that at higher frequencies,

the disturbances are not as persistent and the filter can achieve better

estimates. The state feedback case always outperforms the filter feed-

back case by a small amount over this region. During Moose's thesis,

filter feedback actually outperformed the state feedback case; the

reasoning was a poorly tuned controller. Obviously, this error has been

corrected. At the upper end of the frequency scale we note that the RMS

errors begin an upswing again, for both the full-state feedback and

C filter-in-the-loop cases. This may be because the fastest transient in
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our system is increasing, but the sampling periods have remained at 1 -%

second. Therefore, aliasing effects are beginning.

In Figure 5-8 we see the effects of maintaining wo at 1 rad/sec p...

and varying do from 0.0 to 5.00 cm. As we expect, the RMS errors tend

to increase as the magnitude of the disturbance input increases. During

a small region the filter seems to be outperforming the state feedback

case. This trend is small and short-lived, so that no conclusive state-

* ment may be made. In any event, the difference between state feedback

and filter feedback cases is not significant.

V.1.4 GENERAL COMMENTS. The purpose of using the first order

C Gauss-Markov position model for the target dynamics is to go back and

check if Moose's errors in his cost function (see Chapter 1) severely

impacted his PI controller performance. In all cases there was little

l difference between this controller and his. Any improvements might be

attributed to the proper choice of weighting matrices. Therefore, it

must be concluded that the inclusion of the off-diagonal terms in

* Equation (5-1) does not impact this design significantly.

V.2 FIRST ORDER GAUSS-MARKOV ACCELERATION MODEL

V.2.1 CHOICE OF WEIGHTING MATRICES. To begin making proper
C

choices for cost function weighting matrices, we start by observing the

new cost function, which is displayed in Equation (3-26). Once again we

have two weighting terms X and X which weight the position error

and pseudointegral state, respectively. The method of choosing these

two is similar to that of the previous section and will not be repeated

here. For the new controller, X55 (the pseudointegral 
weighting) affects

the speed and oscillatory nature of the response while the X term
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(error weighting) provides increased damping and tighter control of

6 error amplitudes. It is a much more difficult job to choose these

terms as opposed to the previous problem because only a few choices %.

provide a stable response. The final choice of X = X55 = 100 gives

the best results. If X55 goes below 100, the beam cannot react fast

enough to the accelerating target. If X is increased dramatically,

instabilities are noted.

0• At one point, addition of weights on the target velocity and

acceleration states was attempted, with surprising results. By

weighting these states over which we have no control, in an ad hoc

manner, the beam was able to track the target with reasonable RMS

errors. By incorporating target velocity and acceleration terms into

the cost weightings, it seems possible that the controller will take

4P into account the anticipated future location of the target.

V.2.2 ROBUSTNESS TO PARAMETER VARIATIONS. Once the new PI con-

troller is formulated, simulations on SOF and SOFEPL are desired. In

the interest of time, a parameter sensitivity analysis for the new model

is not conducted and attention is instead focused on the robustness

analysis. It is desired to see if the PI controller can maintain its

performance characteristics even when the true target is different from

that which is modelled in the filter. To accomplish this end, the

parameters T, QT' and R of the target as seen in Equations (3-19) and

(3-20) are varied within the truth model without telling the filter. In

order to attempt recovery of full state feedback robustness qualities,

C the LTR technique is employed as discussed in Chapter IV. In all cases,

the performance bound of full-state feedback is shown to see the impact

5-1%6
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of the filters being in the control loop. Full state feedback indicates

* the best performance possible of the PI controller.

VARIATIONS IN In this study the target model noise strength

QT is varied from .01 to 100 while the filter value remains at 0.1. The

strength of the beam model noise embedded in the truth model is kept con-

stant at 0.04. We begin the analysis by setting the Meer filter noise

strength to 0.04 and varying the target QT" As can be seen in Figure 5-9,

the performance severely degrades as the result of increased target pro- .

cess noise. This arises because, as this noise strength is added, the

target is becoming more dynamic.

C . In order to recover some robustness, white noise is injected at the

control input of the beam model, upon which the Meer filter is based.

The noise inputs of the Meer filter system now appear as:

°T
Q: Q + qBVB (5-4)

Q is 0.04, B is 1, V is the strength of the white Gaussian noise

1 inserted at the control input points (we use V : I), and q is the scalar.

For this simple problem, it appears as though we are merely increasing

* the Q of the beam. Q is raised to a value of 400 with little effect.

C A table of RMS errors both with and without LTR tuning is shown in

Table 5-1. The new points are also displayed in Figure 5-9. We see

that there is only a slight improvement in the higher RMS region while

performance about the nominal is degraded. This is the correct trend;

however, when the noise of the filter is increased by 4 orders of magni-

tude, we would expect more significant changes.

C
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TABLE 5-1

* Average RMS Tracking Errors with Variations
inQof Target

Filters in the Loop
State Feedback Beam Driving Noise Strength

0.04 400

Q = 0.01 3.13787 8.06478 8.32884
0.05 6.01577 9.64186 9.84316
0.10 8.32847 11.3221 11.4819
0.20 11.6612 14.1039 14.2145
0.50 18.3455 20.2948 20.3399
1.00 25.9156 27.7070 27.7110
5.00 57.9502 60.1843 60.0917
10.00 81.9751 84.8745 84.6816

TABLE 5-2

4 Average RMS Tracking Errors with Variations
in R of Target

Filters in the Loop
• State Feedback Beam Driving Noise Strength

0.04 400

R= 0.1 8.32847 9.30874 9.53589
0.2 9.85120 10.0568C 0.3 10.3649 10.5506

0.5 " 11.3221 11.4819
1.0 13.4188 13.5369
2.0 16.8461 16.9173
5.0 24.3955 24.4087
10.0 33.3840 33.3540
30.0 " 56.5089 56.4130

C
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One explanation for the lack of robustness enhancement by LTR tuning

is that the Meer filter is already confident of the detector's ability

to identify events (the beam dispersion is 0.5 cm on a detector of

length 10 cm). Therefore, when the extra noises are added, the Meer

filter is unable to apply much more weighting to incoming measurements.

Another way to explain the lack of effectiveness is to compare the RMS

errors for true state feedback with those of filtered feedback.

Remembering that true state feedback is the best that can be achieved,

we see that the filtered case is not that more than the full state case

to begin with, particularly for high values of QT" Consequently, LTR

tuning cannot impact the performance significantly.

VARIATIONS IN R. In the study R is varied from 0.1 to 100 while

the filter's nominal remains at 0.5. We expect the RMS errors to

increase as our true measurements become more and more noisy while the

filter R remains the same. Figure 5-10 shows this trend. Again runs

are completed for Meer filter noise strengths of 0.04 and 400. The

results are shown in Table 5-2. There is not a significant improvement

at the higher RMS range, but the values around the nominal are being

degraded. This is the proper trend, but the ineffectiveness of the LTR

C technique is again expected due to the high confidence already placed

in the beam detector. The extreme degradation in performance when

filters are in the loop suggests that further work is needed. Either

better choices of R for the filter or adaptive estimation of R might be

attempted (see Chapter VI). The errors are constant for the state feed-

back case because the Kalman filter has been removed from the control

loop.
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VARIATIONS IN T. There are three separate approaches to the

* problem of varying T in the target truth model. The first approach

simply involves varying T between 1 and 1000 and observing the effects

on RMS errors, for the two cases of assumed noise strength in the beam

* dynamics model of the Meer filter (0.04 and 400). As shown in Figure

5-11, the RMS errors increase as T increases. Remembering the equation

for RMS acceleration,

*Q
2 T(RMS Acceleration) -2 (5-5) .

Iwe see that if T is increased, the RMS errors should indeed increase.

Specific values of RM. error are displayed in Table 5-3. There is a

basic conceptual problem with this approach; if the target is maneuvering

* more dramatically (lower T), we expect the beam to have a more difficult

problem in trying to track. This resulted in two other approaches to the

means of conducting robustness studies.

* Initially, when T is increased and the target process noise remains

constant, we are inherently increasing the RMS acceleration of the target

and creating a more difficult tracking problem. On this second cut at

the problem, we vary QT and T simultaneously in order to maintain RMS

acceleration at a constant value. The results are displayed in

Figure 5-12 and Table 5-4. We see that for T values greater than the

nominal, the trend is that slower targets are easier to track. However,

we can still see the trend of the previous analysis to the left of the

nominal. Also note, the state feedback case shows that there is a great

C margin for improvement. Therefore, one final attempt was made to view

the desired trends.
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TABLE 5-3

Average RMS Tracking Errors with Variations
in T of Target (#1)

Filters in the Loop
State Feedback Beam Driving Noise Strength

0.04 400

= 2.03647 7.86385 8.11772
5 4.62579 9.09537 9.18442
10 8.32847 11.3221 11.4819
20 15.5018 16.2714 16.3765
40 22.2687 23.1029 23.1753
50 24.7370 25.3176 25.3832
100 31.2880 31.2187 31.2707
1000 39.9876 38.9876 39.0280

TABLE 5-4

Average RMS Tracking Errors with Variations
in T of Target (#2)

Filters in the Loop
State Feedback Beam Driving Noise Strength

0.04 400

= 1 3.35321 9.52125 9.56537
5 6.29858 10.1702 10.3286
10 8.32847 11.3221 11.4819
20 10.3189 12.6983 12.8485
40 11.2219 13.3181 13.4690
50 11.1577 13.2409 13.3942
100 10.0216 12.2943 12.4663
1000 4.39752 8.57866 8.83193
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TABLE 5-5

Average RMS Tracking Errors with Variations -.

in T of Target (#3)

Filters in the Loop
State Feedback Beam Driving Noise Strength

0.04 400

T = 1 9.15374 18.7839 18.6426
5 8.74176 12.2810 12.3202
10 8.32847 11.3221 11.4819
50 5.24540 9.04158 9.28021
100 3.62381 8.22565 8.49233
500 2.00789 7.68029 7.97129
1000 1.89804 7.65600 7.94813
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RMS acceleration is an indication of the total area beneath the

power spectral density (PSD) curve as shown in Figure 5-13. The maximum

value of this curve is QTr2 (at T = 0). During this final attempt at

the problem, QT and T are varied while the PSD value (or height) is kept

constant as bandwidth is changing. The results are displayed in

Figure 5-14 and Table 5-5. In these we see that indeed a faster target

is more difficult to track and a slower one is easier. Also, the full

state feedback case has considerably lower RMS errors than the filtered

case.

V.3 SUMMARY

In this chapter we have looked at the results of the analysis tech-

niques described in Chapter IV. First, a sensitivity analysis and a

robustness study of disturbance inputs is used to test the corrected

PI controller of Moose. The parameter sensitivity studies involve

varying QT' R, and T of the target in both the truth and filter models.

The robustness study is performed by adding unmodelled constant and

sinusoidal disturbances into the truth model without telling the filter.

In both cases, improvements to Moose's work are minimal. Therefore, the

incorrect off-diagonal terms in the weighting matrix of that previous
C

work do not have a great impact on the system performance. Once a first

order Gauss-Markov acceleration model is used as the target, a robustness

study is carried out to determine whether changing target parameters in

the truth model will impact performance severely. They do; however, LTR

techniques are not capable of restoring the robustness to the quality

of full state feedback.

C
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VI. CONCLUSIONS AND RECOMMENDATIONS

VI.1 CONCLUSIONS.

The purpose of this thesis was to continue working the particle beam

problem which was begun by Meer, Zicker, and Moose (Refs. 9, 18, and 10).

The first step was to correct Moose's software for the PI controller

and perform the same analyses on the tracker as he did in order to

verify and improve his results. First, a sensitivity analysis was per-

formed on the tracker by varying the parameters associated with the

target in both the truth and filter models. Second, robustness of

Moose's corrected PI controller was studied by inputting unmodelled con-

stant and sinusoidal disturbances into the truth model.

The results obtained by performing the above sensitivity and robust-

ness analyses were not very much different from the values obtained by

Moose. By properly adjusting the weighting matrix of the cost function,

RMS errors were improved by approximately 0.1-0.2 cm--not vastly signifi-

cant. The conclusion here is that the corrected off-diagonal terms in

the weighting matrix of the cost function provide some impact, but not a

great deal.

C
Once finished with Moose's corrected software, attention was turned

to the incorporation of a first order Gauss-Markov target acceleration

model into the software. As far as the Kalman filter was concerned,

there were no problems associated with the additional integration terms

provided by this model. However, for the PI controller, we were

required to force these poles away from the origin in order to guarantee

stabilizability which, along with detectability, gives us the sufficient
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conditions for steady state Riccati equation solutions.

With this new filter/controller in hand, a robustness study was per-

formed by varying target parameters in the real world (truth model)

without telling the filter. As a result, performance was severely

degraded. In order to robustify the system, LTR techniques were used,

but they were ineffective. The reason is that the Meer filter already

places heavy emphasis on the measured events, so added white noise at

the control inputs of the dynamics model has little effect.

VI.2 RECOMMENDATIONS FOR FURTHER WORK

There is still a great deal of work which needs to be accomplished

on the particle beam pointing and tracking problem. Now that a realistic

accelerating target model has been incorporated into the PI controller

structure, several other studies might be carried out.

First, a full scale sensitivity analysis for the tracker might be

carried out. It was not possible to accomplish such a study in this

thesis due to time constraints. This would provide insight as to how0
effective the PI controller is when placed in different environments,

where the filter is given complete information about the environment of

interest.

Second, robustness could be studied by the incorporation of unmod-

elled beam actuator dynamics in the truth model. Quite often it is

found in controller designs that the addition of the time delays caused
C

by higher order actuator dynamics can impact the performance and robust-

ness of the system greatly. ..

Third, unmodelled sinusoidal disturbances could be incorporated

into the problem. A performance analysis could be completed similar to
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that involving the first order Gauss-Markov position model. It is
susperted that LTR tuning could have a significant impact on performance

for the lower frequency sinusoids.

Fourth, non-LTR tuning could be carried out for the robustness

analysis described in the previous section. The QT' R, and T terms

could be adjusted within the filter in order to allow a larger range of

variations (of these same parameters) in the truth model.

Fifth and by far the most important, an adaptive estimator for the

states and parameters of the system (and thus also an adaptive controller)

must be designed for the particle beam problem if it is to become more

robust to changing parameters in the real world. This should be the

primary focus of the next thesis dealing with the particle beam control

problem.
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